
  

AFRL-IF-RS-TM-2003-3 
In-House Technical Memorandum 
February 2003 
 
 
 
 
 
 
POLYPHASE FILTER AND DEMODULATION 
TECHNIQUES FOR OPTIMIZING SIGNAL 
COLLECTION PROCESSING 
  
Alfredo Vega Irizarry 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 
 
 
 

 



  

 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TM-2003-3 has been reviewed and is approved for publication. 
 
 
 
 
 
 
 

APPROVED:   
 
   GERALD C. NETHERCOTT 
   Chief, Multi-Sensor Exploitation Branch 
   Information and Intelligence Exploitation Division 
 
 
 
 
 

FOR THE DIRECTOR:  
 
    JOSEPH CAMERA 
    Chief, Information & Intelligence Exploitation Division 
    Information Directorate    
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 074-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
February 2003

3. REPORT TYPE AND DATES COVERED 
In-House technical memo,  Jun 02 – Jan 03 

4. TITLE AND SUBTITLE 
 
POLYPHASE FILTER AND DEMODULATION TECHNIQUES FOR 
OPTIMIZING SIGNAL PROCESSING 

6. AUTHOR(S) 
 
Alfredo Vega Irizarry 
  

5.  FUNDING NUMBERS 
 
PE   -  62702F 
PR   -  459E  
TA   -  PR 
WU  - OJ 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
AIR FORCE RESEARCH LABORATORY/IFEC 
32 Brooks Road 
Rome, NY  13441-4114 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 
AFRL-IF-RS-TM-2003-3 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AIR FORCE RESEARCH LABORATORY/IFEC 
32 Brooks Road 
Rome, NY  13441-4114 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
 
AFRL-IF-RS-TM-2003-3 

11. SUPPLEMENTARY NOTES 
AFRL Project Engineer:  Alfredo Vega Irizarry/IFEC/315-330-2382 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
 
A polyphase filter for frequency demultiplexing as well as several demodulation techniques were explored and 
implemented to provide support to a signal collection system.   An objective of the effort was to identify and implement 
those algorithms that exhibit optimum performance.  A MATLAB and C++ implementation allowed testing and 
comparison of the polyphase filter method against a baseline.  The implementation also allowed for comparison of 
synchronization using delays versus a phase-locked loop implementation.  The project concluded with the creation of a 
graphical user interface that allows the user to display, create customized designs, and process the data. 

15. NUMBER OF PAGES
44

14. SUBJECT TERMS  war simulation, computer games 
 
polyphase filter, demodulation, synchronization, PLL 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

 i

TABLE OF CONTENTS 
 

LIST OF FIGURES AND TABLES ........................................................................................................... ii 
LIST OF ACRONYMS/ABBREVIATIONS ........................................................................................... . iii 
1. INTRODUCTION .................................................................................................................................... 1 
2. DEVELOPMENT..................................................................................................................................... 1 
2.1 CONVENTIONAL METHOD FOR FREQUENCY DEMULTIPLEXING .................................... 1 
2.2 DECIMATION ....................................................................................................................................... 1 
2.3 POLYPHASE FILTER METHOD FOR FREQUENCY DEMULTIPLEXING ............................. 2 
2.5 POLYPHASE FILTER DEMULTIPLEXING ALGORITHM ......................................................... 8 
2.6 EFFICIENCY MEASUREMENTS ...................................................................................................... 9 
3. POLYPHASE FILTER IMPLEMENTATION................................................................................... 11 
4. TESTING AND DEBUGGING............................................................................................................. 13 
5. EVALUATION OF THE POLYPHASE FILTER METHOD........................................................... 17 
6. RELATED EFFORTS ........................................................................................................................... 18 
6.1 FM DEMODULATION....................................................................................................................... 18 
6.2 FM STEREO DEMODULATION...................................................................................................... 19 
6.3 SYNCHRONIZATION........................................................................................................................ 20 
6.4 SYNCHRONIZATION USING PLL.................................................................................................. 21 
6.4.1 ADPLL DESIGN ............................................................................................................................... 22 
6.5 AM DEMODULATION....................................................................................................................... 26 
7. SCP SOFTWARE................................................................................................................................... 26 
7.1 SOFTWARE ARCHITECTURE........................................................................................................ 27 
7.2 SCP FUNCTIONS/PROCESSES........................................................................................................ 27 
7.3 SCP INSTALLATION......................................................................................................................... 29 
7.4 STEP BY STEP FDM USING SCP .................................................................................................... 30 
7.4.1 LOADING DATA.............................................................................................................................. 30 
7.4.2 DISPLAY OF DATA......................................................................................................................... 32 
7.4.3 POLYPHASE DESIGN .................................................................................................................... 32 
7.4.4 FDM SIGNAL DEMULTIPLEXING PROCESS .......................................................................... 35 
7.4.5 MODULATION MENU.................................................................................................................... 35 
8. SUMMARY............................................................................................................................................. 36 
9. REFERENCES ....................................................................................................................................... 37 
 

 

 
 

  



 

 ii

List of Figures and Tables 

Figure 2.1 Signal Processing of FM Signals ...................................................................... 2 

Table 2.1 Convolution Table............................................................................................... 3 

Table 2.2 Convolution Table, Decimation by 2 .................................................................. 3 

Figure 2.2 Equivalent Block Diagram When Decimation the Output by 2 ........................ 4 

Figure 2.3 Equivalent Block Diagram When Decimating the Output by N........................ 5 

Figure 2.4 FDM Demultiplexer Block Diagram................................................................. 6 

Table 2.3 Effects of Decimation on a Uniform Filter Bank ................................................ 7 

Figure 2.5 Polyphase Filter Block Diagram for Channel i .............................................. 10 

Figure 3.1 Configuration for Data Collection.................................................................. 12 

Figure 4.1 Processing Time vs. Filter Taps...................................................................... 14 

Figure 4.2 Processing Time vs. Number of Channels ...................................................... 14 

Figure 4.3 Processing Time for One Channel .................................................................. 15 

Figure 4.4 Processing Time for Four Channels ............................................................... 16 

Figure 4.5 Processing Time for 32 Channels ................................................................... 16 

Figure 5.1 Estimated Processing Time per Channel ........................................................ 17 

Figure 6.1 FM Stereo: DSB-SC Demodulation and Synchronization .............................. 20 

Figure 6.2 Channel Recovery from a Stereo Signal Using a PLL.................................... 22 

Table 6.1 Design Considerations of PLLs ........................................................................ 22 

Figure 6.3 Root Locus of a PLL Design ........................................................................... 24 

Figure 6.4 Costas Loop and Equivalent Control System Diagram .................................. 25 

Figure 6.5 Digital Tanlock Loop and Equivalent Control System Diagram .................... 26 

Table 7.1 Bin (Binary) File Format .................................................................................. 28 

Figure 7.1 SCP Graphical User Interface ........................................................................ 30 

Figure 7.2 Loading Data .................................................................................................. 31 

Figure 7.3 Dialog Window for Loading File .................................................................... 31 

Figure 7.4 Display Menu .................................................................................................. 32 

Figure 7.5 Channel Estimation Tool ................................................................................ 33 

Figure 7.6 Polyphase Filter Design Window ................................................................... 34 

Figure 7.7 Adjust Menu .................................................................................................... 34 

Figure 7.8 FDM Menu ...................................................................................................... 35 

Figure 7.9 Modulation Menu ............................................................................................ 36 



 

 iii

List of Acronyms/Abbreviations 

 

ADPLL All Digital (Software) Phase Locked Loop 

AM Amplitude Modulation 

BPF Band Pass Filter 

CBPF Complex Bandpass Filter 

DPLL Digital Phase Locked Loop (Hardware Implementation) 

DSB-SC Double Sided Band Suppressed Carrier 

DSP Digital Signal Processing 

DTLL Digital Tanlock Loop 

FDM Frequency Division Multiplexed 

FFT Discrete Fast Fourier Transform 

FFTW Fastest Fast Fourier in the West 

FIR Finite Impulse Response Filter 

FM Frequency Modulation 

GUI Graphical User Interface 

I In-Phase 

IIR Infinite Impulse Response Filter 

LPF Low Pass Filter 

NCO Numerical Controlled Integrator 

PLL Phase Locked Loop (In General)  

Q Quadrature-Phase 

SCP Signal Collection Processing (Software) 

 



 

 1

1. Introduction 

This document presents the development and implementation of a polyphase filter 

used for frequency demultiplexing as well as the evaluation of its performance compared 

to a baseline.  A polyphase filter approach is an efficient method that performs frequency 

demultiplexing by means of decimation, filter reduction and the usage of the FFT 

algorithm.  The development was made using Matlab and C++.  The performance was 

measured in terms of execution speed as function of the filter parameters. The code has 

been embedded in a GUI that allows the user to go step by step in the design process, i.e., 

from filter design to audio extraction.  The software also implements several 

demodulation techniques to complement the development. 

 

2. Development 

 
2.1 Conventional Method for Frequency Demultiplexing 

The conventional method consists of a filtering and a downconversion stage in 

each frequency channel.  (See Figure 2.1)  In DSP, downconversion can be replaced by 

decimation which causes a similar effect as downconversion, but unlike downconversion, 

it does not require additional mathematical operations.  Decimation has another benefit:  

it reduces the sampling rate and thus, reduces the size of the output data. The output data 

integrity will not be affected if the final sampling rate is equal or greater than the Nyquist 

rate of the filtered data. 

 

2.2 Decimation 

Decimation refers to a sampling rate reduction.  For the purpose of this 

discussion, the decimation factor is an integer number N and decimation is done by 

retaining samples at time intervals of N⋅Ts, 2N⋅Ts, 3N⋅Ts… 

The frequency spectrum of a decimated signal can be express in terms of the 

original frequency spectrum.[1]  The effect of decimation is the overlap (aliasing) of the 

original frequency spectrum at frequency intervals of (Fs÷N), 2(Fs÷N), 3(Fs÷N)… Since 

the power of the signal does not increase, the final spectrum has to be divided by a factor 

N. (See Equation 2.1)  



 

 2

 

Figure 2.1 Signal Processing of FM Signals  
Using a Conventional Approach for FDM 

 

 ∑
=

⋅−=
N

k

Nkjj
d eS

N
eS

1

/)2( )(1)( πϖϖ
 (2.1) 

 Where Sd is the spectrum of the decimated signal S.  

 

 
2.3 Polyphase Filter Method for Frequency Demultiplexing [2, 3] 

A polyphase filter implementation reduces the computational inefficiencies of the 

conventional approach by means of decimating the input instead of the output, using a 

reduced filter bank and by applying the FFT algorithm. 

A FIR filter impulse response h[n] is used for the development. FIR filters are 

preferred because they can be designed to preserve the phase and consequently would not 

cause distortion.  The linear-phase FIR filter requires the impulse response to be 

symmetric or anti-symmetric around its middle point in the time axis.[4] 

Consider the convolution between input x[n] and the filter impulse response h[n] 

producing an output ][][][ nhnxny ∗= . The concept of convolution can be explained 

using a convolution table or matrix as shown in Table 2.1. 

 

FM 
Demod. FM 

Demod. FM 
Demod. 

LPF BPF 

fo 

FDM Channels 

x[n] 
yi[n] 



 

 3

Table 2.1 Convolution Table 

n x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] 
0 h[0]         
1 h[1] h[0]        
2 h[2] h[1] h[0]       
3 h[3] h[2] h[1] h[0]      
4 h[4] h[3] h[2] h[1] h[0]     
5 h[5] h[4] h[3] h[2] h[1] h[0]    
6 h[6] h[5] h[4] h[3] h[2] h[1] h[0]   
7 h[7] h[6] h[5] h[4] h[3] h[2] h[1] h[0]  
8 h[8] h[7] h[6] h[5] h[4] h[3] h[2] h[1] h[0] 
 

The first row contains the sampled input signal at times 0, 1, 2…8.  The first 

column represents the time sequence for which the output is calculated.  The table is 

filled in with the filter coefficients. 

The output y[n] is given by the sum of products of filter coefficients in row n and 

the input x[n]; for example:  y[2] = h[2]·x[0] + h[1]·x[1] + h[0]·x[2].  Each column has the 

filter coefficient arranged in increasing order. (See the highlighted column, Table 2.1.) 

Alternating samples are retained when the output is decimated by 2. The effect of 

decimation is shown in Table 2.2. 

Table 2.2 Convolution Table, Decimation by 2 
n x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] 
1 h[1] h[0]        
3 h[3] h[2] h[1] h[0]      
5 h[5] h[4] h[3] h[2] h[1] h[0]    
7 h[7] h[6] h[5] h[4] h[3] h[2] h[1] h[0]  
 

Two filter patterns are formed after decimating the output.  The patterns are made 

of arranging the even coefficient and the odd coefficients in ascending order.  In addition, 

the filter made of the even coefficients only modifies the odd input sequence.  The filter 

made of the odd coefficients modifies the even input sequence. 

 



 

 4

From a mathematical point of view, the decimated output can be modeled as a 

commutator, a decimator, two decimated filters made of even and odd coefficients and an 

adder, as shown in Figure 2.2.  Equations (2.2a) through (2.2c) represent this process. 

 

 

Figure 2.2 Equivalent Block Diagram When Decimation the Output by 2 

 

 ]2[]12[]2[0 nhnxny ∗+=  (2.2a) 

 ]12[]2[]2[1 +∗= nhnxny  (2.2b) 

 ]2[]2[]2[ 10 nynyny +=  (2.2c) 

 for n = 0,1,…  

 

A similar analysis can be made when the output is decimated by N.  (See Equation 

2.3)  The general block diagram representation is shown in Figure 2.3. 

 

 ][][][ nhnxny ∗=   

 

]1[*][
...

]1[]2[
][]1[

−++

+∗−++
∗−+=

NNnhNnx

NnhNNnx
NnhNNnx

 (2.3) 

2 { h[1], h[3], …} 

2 { h[0], h[2], …} z-1 

Σ 
x[n] y[n] 



 

 5

 

Figure 2.3 Equivalent Block Diagram When Decimating the Output by N 
 

The polyphase filter architecture of Figure 2.3 has some of the computational 

advantages: 

 First, decimation has reduced some computational effort by reducing the number 

of input samples. 

 Second, decimation causes aliasing of the output signal.  The frequency spectrum 

of the signal is periodic and it reflects to baseband.  A frequency rotation might be 

needed to center the spectrum on the frequency axis.  However, this process can 

be ignored in the present development because the demodulation schemes used 

after frequency demultiplexing do not require the rotation. 

 

The polyphase filter method requires the design of a LPF model filter. Let h0 

represents the input response of a low pass filter.  The variable L represents the number 

of filter taps and it is a multiple of the number of channels N. 

 

N 
{ h[N-1], h[2N-1], 

h[3N-1] …} 

N { h[N-2], h[2N-2], 
h[3N-2] …} z-1 

Σ 
x[n] y[n] 

N { h[N-3], h[2N-3],  
h[3N-3]…} z-1 

N { h[0], h[N], 
h[2N]…} z-1 



 

 6

{ h0[0] , h0[1], h0[2], h0[3], …, h0[L-1] } 

 

For frequency demultiplexing, filters hi[n] are used for channel i.  The filter 

responses are of equal magnitude. Each filter is a rotation of the original filter, uniformly 

shifted in frequency. (See Figure 2.4) The resulting filters hi[n] form a bank of complex 

bandpass filters. 

 

 Nnij
i enhnh /2

0 ][][ ⋅⋅⋅= π  (2.4a) 

 )()( /2
0

Nnjj eHeH ⋅−−= πϖω  (2.4b) 

 

Where: 

N = number of channels, 

i = channel number, 

n = sequence number. 

 

 

 

 

Figure 2.4 FDM Demultiplexer Block Diagram 

 

h0(z) 

Demultiplexed 
FDM Channels 

x[n] 
y0[n] 

y1[n] 

yN-1[n] 

h1(z) 

hi(z) 

hN-1(z) 

yi[n] 

CBPF Bank 



 

 7

The polyphase filter development requires that the output be decimated by a 

factor equal to the number of channels, N.  (See Equation 2.5) A further development 

tries to exploit the symmetries of weight function W. [5] (See Equation 2.6) 

 

 ][][][ nhnxny ii ∗=  (2.5) 

 for n=0, 1, 2, … N  

 

 Ninjin eW /2 ⋅⋅−= π
 (2.6) 

 

The convolution table for channel i is shown Table 2.3. 

    

Table 2.3 Effects of Decimation on a Uniform Filter Bank 

n x[0] x[1] x[2] x[3] 

N-1 h[1N-1]·W-i(1N-1) h[1N-2]·W-i(1N-2) h[1N-3]·W-i(1N-3) h[N-4]·W-i(1N-4) 
2N-1 h[2N-1]·W-i(2N-1) h[2N-2]·W-i(2N-2) h[2N-3]·W-i(2N-3) h[2N-4]·W-i(2N-4)

3N-1 h[3N-1]·W-i(3N-1) h[3N-2]·W-i(3N-2) h[3N-3]·W-i(3N-3) h[3N-4]·W-i(3N-4)

4N-1 h[4N-1]·W-i(4N-1) h[4N-2]·W-i(4N-2) h[4N-3]·W-i(4N-3) h[4N-4]·W-i(4N-4)

5N-1 h[5N-1]·W-i(5N-1) h[5N-2]·W-i(5N-2) h[5N-3]·W-i(5N-3) h[5N-4]·W-i(5N-4)

6N-1 h[6N-1]·W-i(6N-1) h[6N-2]·W-i(6N-2) h[6N-3]·W-i(6N-3) h[6N-4]·W-i(6N-4)

 

Because the weight function is periodic in nature, it can be demonstrated that the 

following property is valid.  

 )()( mNimNni WW −−−− =  (2.7) 

 

Table 2.4 shows the results of substituting Equation 2.7 into Table 2.3.  This step 

allows the simplification of the filter bank of Figure 2.4 into what is known as the 

Polyphase Filter Method for Frequency Demultiplexing.  Each column contains the 

decimated filter coefficients multiplied by a constant gain or weight given a particular 

FDM channel.  Thus, the equivalent block diagram (See Figure 2.5) has N sub-filters 

followed by N gain states. 



 

 8

Table 2.4 Effect of Decimation on a Uniform Filter Bank 

n x[0] x[1] x[2] x[3] 

N-1 h[1N-1]·W-i(N-1) h[1N-2]·W-i(N-2) h[1N-3]·W-i(N-3) h[1N-4]·W-i(N-4) 
2N-1 h[2N-1]·W-i(N-1) h[2N-2]·W-i(N-2) h[2N-3]·W-i(N-3) h[2N-4]·W-i(N-4) 
3N-1 h[3N-1]·W-i(N-1) h[3N-2]·W-i(N-2) h[3N-3]·W-i(N-3) h[3N-4]·W-i(N-4) 
4N-1 h[4N-1]·W-i(N-1) h[4N-2]·W-i(N-2) h[4N-3]·W-i(N-3) h[4N-4]·W-i(N-4) 
5N-1 h[5N-1]·W-i(N-1) h[5N-2]·W-i(N-2) h[5N-3]·W-i(N-3) h[5N-4]·W-i(N-4) 
6N-1 h[6N-1]·W-i(N-1) h[6N-2]·W-i(N-2) h[6N-3]·W-i(N-3) h[6N-4]·W-i(N-4) 

 

The computational advantages of the polyphase filter also include: 

 Computational effort is saved since each channel uses similar filter-bank 

calculations.  First, convolution is done for each decimated input and decimated 

filter.  These steps are the same for all the channels. 

 When the filter outputs are combined to recover the channels, the weight 

functions form the Inverse Discrete Fourier Transform Matrix (See Equation 2.8).  

This fact suggests that speed performance can be achieved if the number of 

channels, i, is a power of two.  In this case, the Discrete Fourier Transform can be 

replaced with the Inverse Fast Fourier Transform. 

 l
N

l

il
i vWy ∑

−

=

−=
1

0
 (2.8) 

 For i = 0, 1… N-1  

 

The variable νl is the output of the polyphase filter l. 

 

2.5 Polyphase Filter Demultiplexing Algorithm 

 

Pre-filtering Steps 

1. Design a FIR low pass filter h(n). The number of taps L should be a multiple of 

the number of channels N. 

2. Decimate h by a factor equal to the number of channels.  The result is a set of 

decimated filters hi , where i = 0,1,…N-1 channels. 

 



 

 9

Commutator Operation 

3. Decimate the input x by a factor equal to the number of channels.  The result is an 

N dimensional vector of decimated data xi, where i = 0, 1…N-1. 

 

Filtering Operations 

4. Filter the decimated input using the decimated filters.  Notice that the decimated 

filter hi has to operate on the decimated input xN-i+1.  The output of the filters will 

be a set of vectors called vi. 

 

Fourier Transform operation 

5. Arrange the vectors vi in a matrix mij, where each matrix row i represents column 

vector vi. (See Equation 2.8) 

6. Compute the Inverse of the Fourier Transform of each column j of the matrix mij.  

The Inverse of the Fourier transform is the matrix [Wij] where Wij is the weight 

function in Equation 2.6.  The product of the two matrices is N row vectors that 

represent the output of each channel. 

 

2.6 Efficiency Measurements 

The performance of the conventional and polyphase filter implementation will be 

measured in terms of their processing time. 

It has been claimed that the conventional approach is computationally inefficient 

compared to the polyphase filter method.  First, the outputs from each channel are 

oversampled relative to the channel bandwidth when downconversion is used.  This can 

be corrected using decimation as it has been explained before.  However, the approach 

still requires the multiple numbers of calculations that comes from convolving the input 

signal with each channel filter. 

Whether using decimation or not, the overall number of floating point 

products/divisions in a non-optimized real time execution is expressed by Equation 2.9. 
[2] 



 

 10

 

 

Figure 2.5 Polyphase Filter Block Diagram for Channel i 
 

 

N 
{ h[N-1], h[2N-1], 

h[3N-1] …} 

N { h[N-2], h[2N-2], 
h[3N-2] …} z-1 

x[n] 

N { h[N-3], h[2N-3],  
h[3N-3]…} z-1 

N { h[0], h[N], 
h[2N]…} z-1 

yi[n] 

W-0

W-i

W-2i

W-k

W-i(N-1)

Σ 

Same Structure for all Channels 

v0

v1

v2

vk

vN-1



 

 11

 

 sfLNtimeOperations ⋅⋅=/  (2.9) 

 

Where: 

N is the number of channels; 

L, the number of taps and 

fs, the sampling rate. 

 

 

In the case of the polyphase filter, the number of operations per time is given by 

Equation 2.10. [2] 

 

 sfNLtimeOperations )](log[/ 2+=  (2.10) 

 

Where: 

N is the number of channels, 

L the number of taps and 

fs is the sampling rate. 

 

 

The logarithmic term in Equation 2.10 is due to the convergence rate of the FFT 

algorithm.  Note that in the case of the polyphase filter, when the number of channels is 

equal to 1, Equations 2.9 and 2.10 are identical. So it can be stated that the conventional 

method is a particular case of the polyphase filter method. 

The polyphase filter can be seen as an optimization of the conventional approach.  

Moreover, the polyphase filter can be optimized even further.  Its optimization relies on 

the optimization of the FFT and filtering methods that will be discussed in the evaluation 

of the conducted tests. 

The above equations assume that the conventional algorithms are used for 

filtering and FFT.  The polyphase filter method can be much faster depending on their 

respective degree of optimization. 

 

3. Polyphase Filter Implementation 

The purpose of developing the polyphase filter is to support a particular signal 

collection system as illustrated in Figure 3.1.  The configuration consists of an antenna 



 

 12

(or antenna array); a (WJ) receiver with a programmable SCSI connection, 8 channels for 

analog and digital outputs; and a PC with an internal ADC. 

 

 

Figure 3.1 Configuration for Data Collection 
 

In this application, the antennas receive signals from different sources of 

opportunity.  The receiver downconverts to an IF and provides filtering for those signals 

that are of interest in our chosen application: commercial FM radio stations.  A computer 

receives samples of the analog output at a rate of up to fs = 6.4 MHz and stores the 

samples in memory.  An ICS 650 dual channel ADC is used.  The size of each file in 

memory is limited and depends on the selected sampling rate and storage type (memory 

or disk).  Once collected, files on order of 650 MB can be stored to a CDR optical disk. 

The polyphase filter will be part of a collection of subroutines used to process 

signals of interest.  The final goals of this effort are to: 

1. Achieve Frequency Demultiplexing 

2. Achieve Computational Efficiency 

3. Develop a portable code, and 

4. Embed the code in a user-friendly GUI. 

 

2 of 8 
analog 

channels

PC 

ADC 

STORAGE 

Receiver 

digital 
channels 

(not used) 

Laptop 

Antenna or 
Antenna Array 

SCSI 

Signal 
Collection 
Processing 



 

 13

4. Testing and Debugging 

Testing will ensure proper performance of the polyphase filter algorithm. Testing 

is based on: 

 Extracting the audio signal.  This is the ultimate goal and it indicates that the 

whole algorithm is working properly.  This test requires the implementation of a 

demodulation process that will be discussed later on; 

 Measuring speed relative to the conventional approach. 

 

Other tests performed at a low level of development are: 

 Testing the polyphase filter using single harmonic signals.  This test will be 

able to determine if the polyphase filter is demultiplexing the signal as expected; 

 Testing the polyphase filter using an impulse signal.  By applying an impulse 

response, each channel should reproduce the filter coefficients. 

 

After successful audio extraction, the next step required is to compare 

performance of the polyphase method against the conventional approach.  Because the 

polyphase filter is implemented on a system that is not dedicated to the algorithm, 

deviations from Equations 2.9 and 2.10 occur and should be expected.  The results 

comparing the C++ and Matlab implementations are shown in the following figures. 

Figure 3.2 shows measured data of a polyphase filter algorithm implemented in 

Matlab and C++.  The results show a linear relationship between processing time and the 

number of filter taps.  The data was measured in a 2.1GHz, 512MB RAM, Dual 

Processor, Dell Computer™, with Windows XP OS.  

The linear relationship between processing time and filter tabs is predicted by 

Equation 2.9 and 2.10.  It can be seen that Matlab is using some kind of optimization.  It 

was observed that a 32-point Matlab FFT algorithm runs approximately 10 times faster 

than the standard 32-point FFT in C++.  This fact can explain the reason for having an 

approximate 10:1 ratio between the slope of the blue and red traces of Figure 4.1. 

 



 

 14

Polyphase Filter
Performance (32 Ch./33KSamples)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800

Number of Filter Taps

Pr
oc

es
si

ng
 T

im
e 

(s
ec

.)

C++
Matlab

 

Figure 4.1 Processing Time vs. Filter Taps 

Polyphase Filter
Performance (704 Taps/33KSamples)

0

10

20

30

40

50

60

70

0 10 20 30 40

Number of Channels

Pr
oc

es
si

ng
 T

im
e 

(s
ec

.)

C++
Matlab

 

Figure 4.2 Processing Time vs. Number of Channels 
 



 

 15

Figure 4.2 suggests that the processing time is faster than the predictions and its 

performance seems to be better than expected.  Under the assumptions of Equations 2.9 

and 2.10, the processing time should have a logarithmic relationship.  The causes for this 

behavior are not well known and several propositions will be made in Section 5. 

Additional testing was performed to compare the Matlab and C++ subroutines.  

Since Matlab seems to have a superior performance than C++, the particular process 

speed was measured. (See Figures 4.3-4.5) 

The most considerable difference is found in the FFT process that Matlab uses.  In 

the polyphase filter algorithm the number of point of the FFT is equal to the ratio of 

number of filter taps and the number of channels.  Having a small number of channels 

implies calculating a large number of FFT points.  The speed of Matlab FFT algorithm is 

approximately 10 times faster than the standard FFT. 

 

Polyphase Filter
(704 Taps, 33KSamples, 1 Channel)

0 20 40 60 80

Loading

Formating

Filtering

Formating

IFFT

Formating

Writing

Pr
oc

es
s

Processing Time (sec)

Matlab
C++

 

Figure 4.3 Processing Time for One Channel 

 



 

 16

Polyphase Filter
(704 Taps, 33KSamples, 4 Channels)

0 5 10 15 20

Loading

Formating

Filtering

Formating

IFFT

Formating

Writing

Pr
oc

es
s

Processing Time (sec.)

Matlab
C++

 

Figure 4.4 Processing Time for Four Channels 

 

Polyphase Filter
(704 Taps, 33KSamples, 32 Channels)

0 1 2 3 4 5 6

Loading

Formating

Filtering

Formating

IFFT

Formating

Writing

Pr
oc

es
s

Processing Time (sec.)

Matlab
C++

 

Figure 4.5 Processing Time for 32 Channels 

 



 

 17

The filtering algorithm is responsible of creating another significant difference 

between Matlab and the C++ code.  The worst case scenario occurs for large number of 

filter taps.  It is also noticed that this process that takes the most amount of the time, 

excluding reading and writing operations. 

 

5. Evaluation of the Polyphase Filter Method 

A graph showing the processing time per channel versus the number of channels 

confirms the efficiency of the polyphase filter method compared to the conventional 

approach. (See Figure 5.1)  The graph shows a baseline, i.e. the conventional approach, 

based on a Matlab algorithm.  For a fixed tap filter, increasing the channel number does 

not change the processing time per channel.  Conversely, changing the number of 

channels in the polyphase filter approach will reduce the processing time per channel. 

 

Processing Time per Channel
32KSamples, 704 Taps

0

10

20

30

40

50

60

70

0 10 20 30 40

Channels

Ti
m

e 
in

 S
ec

on
ds

Matlab
C++
Baseline

 

Figure 5.1 Estimated Processing Time per Channel 
 

The polyphase filter algorithm becomes exceedingly fast relative to the 

conventional method when the number of channels is large.  Since the polyphase 



 

 18

algorithm relies on the FFT and filtering routines, it is expected that its overall 

performance depends on the degree of optimization of the FFT and filtering algorithms. 

After investigating the possible causes that makes Matlab to exhibit better 

performance than the C++ algorithm, it can be stated that: 

 Matlab uses a FFTW algorithm which proved to be faster than the traditional FFT 

algorithm.  The FFTW package was developed at Massachusetts Institute of 

Technology by Matteo Frigo and Steven G. Johnson. [6] 

 Matlab can be using FFT-convolution methods, also called overlap-add method 

and overlap-save method, for their filtering.  These methods are based on 

multiplying the frequency spectrum of the impulse response and the signal and 

then transforming into the time domain.  They also require zero padding or data 

truncation respectively.  An approximate number of products/divisions required in 

this algorithm is given by Equation 5.1 [7] 

 

 
)log3(8 2

2

LLL
L

+⋅⋅⋅
 (5.1) 

 Where L is the number of taps.  

 

6. Related Efforts 

Demodulation schemes were developed as part of the polyphase filter 

development and implementation.  They were needed to recover the audio of the 

demultiplexed signals.  The following sections discuss the implementation of those 

methods. 

 

6.1 FM Demodulation 

The quadrature components of the FM signal were used to recover the audio 

signal.  These types of signals produce simple results for FM and AM demodulation.  The 

quadrature components I and Q are given by Equations 6.1a-c. The complex signal 

formed by I and Q has the peculiarity of having only non-negative spectral components.[8] 

 s[n] = I[n] + j Q[n] (6.1a) 

 I  = f(nT) cos(2πf0nT) (6.1b) 



 

 19

 Q = f(nT) sin(2πf0nT) (6.1c) 

 

The procedure for digital signals requires the following steps: [9] 

 

 Obtaining the rate of change of the signal in the time domain. 

o This is obtained by multiplying the conjugate of the delayed signal by the 

signal itself.  The product x[n] contains the audio information in the phase 

which is proportional to the frequency change. 

 

 x[n] = y[n] × y[n-1]*   (6.2) 

 

 Calculating the phase difference of the signal. 

o Signed arctan function is used to extract the phase of x 

 

 s[n] = Arctan( x[n]  ) (6.3) 

 

 Filtering.   

o For commercial FM radio stations the filter bandwidth is 19 kHz. 

 

6.2 FM Stereo Demodulation 

The modulation of an FM stereo signal requires: 

 

FM Demodulation 

 Obtaining the rate of change of the signal in the time domain. 

 Calculating the phase difference of the signal as in Equation 6.3. 

 

AM-DSB-SC Demodulation 

The final signal z[n] is composed of three spectral signals.  The frequency 

spectrum will show: 

 

 L+R (left plus right) component         0-15 kHz*  



 

 20

 DSB-SC component                         23-53 kHz*  

 Pilot tone                                             19 kHz*  

*For FM stereo radio stations [8, 10] 

The general idea is to demodulate the DSB-SC component using the pilot tone.  

The demodulated signal is the L-R component that is needed to recover the left (L) and 

right (R) channels of a stereo signal. In this process, the filtered L-R component can lose 

phase reference to the L+R component.  Adding and subtracting the L-R and L+R 

components will not result in the recovery of the channels unless their phases have been 

synchronized. 

 

Figure 6.1 FM Stereo: DSB-SC Demodulation and Synchronization 
 
 
6.3 Synchronization [9] 

As mentioned before, FM demodulation produces a signal with three spectral 

components: a pilot tone, L+R and DSB-SC. (See Equation 6.4) 

 

 s[nT] = sPilot[nT] + sL+R[nT] + sDSB-SC[nT] (6.4) 

 

For FM Stereo demodulation, the envelope of the term sDSB-SC[nT] needs to be 

recovered without loosing phase reference with respect to sL+R[nT].  A filter is required to 

F×2 z-n0 

z-n1 

z-n2 
+ 

+ 

+ 
sL+R(nT) 

sDSB-SC(nT) 
LPF 

BPF 

BPF 

sPilot(nT) 

Delay 

Delay 

Delay Freq. 
Doubler 

- 



 

 21

extract the component.  However, these filters add a delay to each signal causing the 

components to lose phase reference.  

 

Output LPF: sL+R[n-nLPF], delay = nLPF (6.5a) 

Output BPF: sDSB-SC[n-nBPF], delay = nBPF (6.5b) 

Output BPF: sPilot[n-nNBPF], delay = nNBPF (6.5c) 

 

Additional delays (See Equations 6.5a-c) have to be added in order to maintain 

phase reference relative to each other. (See Equations 6.6a-c) 

 

Output L+R: sL+R[n-n3] = sL+R[n-nLPF-n2] (6.6a) 

Output L-R: sL-R[n-n3] =  sL-R[n-nBPF-n1] (6.6b) 

 sL-R[n-nBPF- n1] = sPilot[n-nNBPF- n0] (6.6c) 

 Where:  n3  is the total delay  

 

6.4 Synchronization using PLL 

A PLL design simplifies the process of synchronizing the FM constituents, but 

requires a considerable effort to understand its design and operation. 

A motivation for using a PLL to recover the channel L and R is that this device 

can lock to the pilot tone without requiring previous filtering.  It has been shown that the 

PLL has excellent noise performance and thus, it is expected not to be susceptible to the 

spectral components L+R and AM-DSB-SC.  The output of the PLL, i.e., the locked 

signal, is doubled in frequency to demodulate the AM-DSB-SC component.  The overall 

process shown in Figure 6.2 does not require delay blocks to maintain phase reference.  

As a trade off, the PLL requires a short time to lock to the signal. This time is known as 

settling time and constitutes an important design parameter. [11, 12] 



 

 22

 

Figure 6.2 Channel Recovery from a Stereo Signal Using a PLL 
 
6.4.1 ADPLL Design 

PLL literature distinguishes between analog PLL, digital PLL (DPLL) and 

software PLL (ADPLL).  For the purpose of this discussion, PLL can designate any of 

these types.  The DPLL usually refers to a hardware implementation of a digital design, 

so it will be irrelevant to the present discussion. [11] 

Several methodologies were explored for the PLL design. Table 6.1 compares the 

design considerations of each approach. 

Table 6.1 Design Considerations of PLLs 

PLL Type Analog 
PLL ADPLL Costas 

ADPLL DTLL 

sin(θ)        

Non-linearities 
Loop Gain as function 
of amplitude of input 

signal 
       

Stability Issues Poles and Zeros of  
LPF       

Assumptions 
≈90° phase difference 
between the input and 

the locked signal 
        

PLL F×2 

LPF 

LPF 

L

R 

s[n] 

+
-

- 
+



 

 23

PLL Type Analog 
PLL ADPLL Costas 

ADPLL DTLL 

Tracking the 
Input 

Impulse, step, ramp 
responses      

 

The first approach consisted of designing an analog PLL and then converting it to 

an ADPLL.  This approach proved to be extremely difficult and inappropriate because the 

transformation to the discrete domain seldom generates stable designs.  Even if the poles 

and zeros of the PLL’s characteristic equation fall inside the unit circle (a stability 

condition), the root locus could leave the circle for particular loop gain values as shown 

in Figure 6.3. 

Another explored method consisted of designing the PLL in the discrete domain.  

The method did not differ much to the previous one.  It was found that using a high order 

LPF in the ADPLL can contribute to instability for high loop gain values.  In the PLL 

implementation of Figure 6.3, the loop gain depends on the amplitude of the input signal.  

There is the possibility of having unstable responses usually for high amplitudes and 

especially when the PLL transfer function contains multiple poles and zeros.  Several 

examples found in literature develop ADPLL using transfer functions with few poles and 

zeros, presumably because adding extra poles and zeros causes more stability problems. 
[13] 

A third method is based on the Costas PLL shown in Figure 6.4.  Two multipliers 

are used to combine the I and Q components of the NCO with the input signal.  The 

design has been proven to work, although it is susceptible to nonlinearities of the sine 

function.  In this approach the filtering is done by canceling the unwanted terms rather 

than using a LPF. 



 

 24

 
Figure 6.3 Root Locus of a PLL Design 

 

A fourth approach attempts to eliminate all the non-linearity of the Costas Loop.  

The design is known as a digital tanlock loop (DTLL). The design adds the arctan(y,x) 

function to extract the phase difference.  In this design, the phase detector (a non-linear 

component) and the arctan(y,x) function combined together can be represented as a linear 

component.  Some adjustments were made to extend the output range of the arctan 

function beyond ±π.  It also eliminates the effects of the amplitude of the input signal in 

the loop.  Another advantage of this approach is that adding a high order LPF in between 

the multiplier and the arctan function will not contribute to the poles and zeros of the 

ADPLL characteristic equation.  An illustration of this idea is shown in Figure 6.5. 

Filter Poles and Zeros 

Controller Poles and Zeros Integrator Poles and  Zero 

Unit Circle and Root Locus of a PLL Design

Instability 



 

 25

 

Figure 6.4 Costas Loop and Equivalent Control System Diagram 
 

A disadvantage of using an ADPLL against the filter approach of Section 6.2 is 

that the algorithm requires each block output to be calculated separately at a specific time 

due to the nonlinear calculations and the presence of blocks with memory.  The Matlab 

algorithm was found to be 10 times slower than baseline approach. 

A discussion of the stabilization techniques can be found in references [11-14].  

The most common approach is to start the design based on a second order analog system 

and translate it to the discrete domain. [12] 

Tracking considerations were found to be irrelevant to the ADPLL design.  A one 

order PLL was able to track different input signals.  Finding an explanation was out of 

the scope of this study, but in theory a second order ADPLL should be able to follow 

exponential signals due to the term (z-1) in the error transfer function. [13] 

 

NCO C(z) 

90° 

+ 
+ 

])[̂sin(][̂ 0 nnns θ+Ω=  

K·sin( )

)1(
)1(2

−
+

z
z

Ts

 C(z) 

+ 
- 

Phase θ[n] 

Estimated phase 
][ˆ nθ  

])[sin(][ 0 nnKns θ+Ω=  



 

 26

 
Figure 6.5 Digital Tanlock Loop and Equivalent Control System Diagram 

 
6.5 AM Demodulation 

Demodulating a discrete AM signal is relatively a simple process. (See Equation 

6.8)  When the in-phase and quadrature components are provided, the AM demodulation 

consists of calculating the amplitude of the complex signal. [9, 15]  

 y[n] = abs( x[n] ) (6.8) 

  

7. SCP Software 

SCP or Signal Collection Processing Software is the final product of the efforts 

presented in this report.  SCP is a program written in Matlab 6.5 and C++ 6.0 that allows 

the user to process communication signals using the demultiplexing and demodulation 

techniques presented in this report. 

 

)1(
)1(2

−
+

z
z

Ts

 C(z) 

+ 
- 

Phase θ[n] 

Estimated phase 
][ˆ nθ  

LPF 

NCO C(z) 

90° ])[ˆsin(][̂ 0 nnns θ+Ω=

])[sin(][ 0 nnns θ+Ω=
 

atan 

LPF 



 

 27

7.1 Software Architecture 

Matlab provides limited software capabilities for GUI design.  Some of the 

functionality of the Signal Collection Processing Software, SCP, comes from Windows® 

programming.  The software makes use of two ActiveX components:  TreeView and Grid 

Controls. 

The SCP has three main components:  a Tree View control, a Display and 

Navigation Buttons. 

The TreeView control displays the menu.  The menu items are ordered following 

the design process, from data loading, data display, filter design, data processing, and 

audio extraction. The TreeView also allows for displaying submenus.  For instance, the 

filter design menu has two submenus: one called channel finder and the other channel 

adjust.  They allow the user to estimate the number of channels and adjust the filter 

parameters while displaying the filters. 

The Display is the area of the GUI that contains the different forms or frames that 

provide most of the software functionality.  Although this feature has been implemented, 

Matlab 6.5 does not support multiple frames in the way C++ does.  The implementation 

required to create Matlab’s M-files for each frame.  These M-files and subroutines are 

controlled by a Main subroutine and provide certain functions such as: create, hide, show 

controls, and execute procedures. The main subroutine receives a request of the user to 

change menus through the TreeView control.  Then the subroutine requests these m-files 

to show and hide controls.  Once the controls are visible, they become available to the 

user. 

The Navigation buttons provide independent controls to move through menus 

without using the TreeView control.  They were designed to allow SCP code to be run in 

a different operating system.  They also provide an Exit button. 

 

7.2 SCP Functions/Processes 

SCP version 1.0 has several menus shown in the TreeView control. 

Load menu allows the user to select a bin file.  The file contains binary 

information, but provides no description of the data.  The information is ordered by real 



 

 28

and imaginary part, by channel and sample number.  Table 7.1 shows the order of a 

complex, 2-source format. 

Table 7.1 Bin (Binary) File Format 

Sample 1 Sample 2 

Source 1 Source 2 Source Source 

Real Imag Real Imag Real Imag Real Imag 

 

A format file is needed to provide the sampling rate, number of input sources, the 

data type and length. The data length can be a signed 8, 16, 32 or 64 bit integer.  An 

example of a format file contains the following Matlab code. 

 

% Format for Binary Files 

samplingrate = 6400000;   % 6.4 MSamples/second 

complexflag = 1;    % 1 for complex/ 0 for real 

precision    = 'int16';    % ‘int8’, ‘int16’, ‘int32’, ‘int64’ 

sourcechannels = 2;    % Number of sources 

 

The software allows the user to modify the sampling rate as convenient.  All other 

parameters must be modified through editing the format file. 

The Display menu allows the user to see the spectrum of the loaded data as it 

changes in time.  The capabilities include: 

 play and stop buttons, 

 advance in time using a slider control, 

 change the frequency and amplitude limits (X-Axis, Y-Axis Submenu), 

 zoom in/out using mouse click, 

 increase display resolution (Display menu), and 

 increase time interval for refreshing data (Display menu). 

 

The Filter Design menu allows the user to design a polyphase filter.  It provides 

the following capabilities: 

 Filter Design base on specifications, 



 

 29

 Channel finder tool to estimate the number of FDM channels, and 

 Filter Adjust tool to rotate the filter in frequency. 

 

The FDM menu shows the filter specification and run the polyphase filter 

subroutine.  The menu allows the user to select between a Matlab and C++ 

implementation. 

The Demodulation menu is implemented using a Grid control.  The grid is a 

Windows® ActiveX component that presents data in a tabular form.  Column one has a 

list of the demultiplexed bin files/channels.  The user can select a demodulation type by 

clicking in the third column.  A first click will change from skip file to FM demodulation.  

Consecutive clicks will change the demodulation type to FM Stereo, AM, and None.  The 

software will run the subroutines when Process button is pressed.  A processed bin file 

will contain the date and time when the subroutine was executed.  The software will open 

and play the final audio file by making a double-click on the cell that contains the date. 

The Help menu provides the software documentation on all its features and gives 

guidance for troubleshooting. A help window will appear when the user clicks in the title 

of the topic. 

 

7.3 SCP Installation 

Several minimum requirements are needed before installing the software.   

 Matlab 6.5 or higher 

 Windows 98 or higher. 

 Audio player for wav-files. 

 TreeView and GridControl ActiveX Components 

 C++ compiler if C++ code implementation is going to be used. 

The entire SCP directory that has the Matlab code has to be copied from the disk 

to the computer. After Matlab is opened the path has to be change to the SCP folder.  

Then the InstallSCP must be run from Matlab command line. 

After a successful installation, the user must run the StartSCP program from 

Matlab command line.  The GUI interface will appear after a short moment. (See Figure 

7.1) 



 

 30

 

 
Figure 7.1 SCP Graphical User Interface 

 

7.4 Step by Step FDM using SCP 

 
7.4.1 Loading Data 

To change to the Load Menu, press Next button or click Load in the TreeView 

control.  SCP will display a button used for loading files and several fields with 

properties.  (See Figure 7.2)  Pressing load will open a dialog window and the user can 

navigate and find the binary file that contains the data. (See Figure 7.3) 



 

 31

 

Figure 7.2 Loading Data 

 

After selecting the file a new dialog window will appear asking for a format file.  

Select the format file with the extension .fmt.txt.  The file needs to be created before 

attempting loading the data.  If this step is cancelled, the user will have to attempt to 

reload the data.  Loading the format file will cause the display of important properties 

such as sampling rate and duration. 

 

  

Figure 7.3 Dialog Window for Loading File 

 

 



 

 32

7.4.2 Display of Data 

The Display menu has several features that control the display of the data.  

The Y-Axis submenu contains controls that allow the user to select the input 

source and display the type of trace.  By pressing the Play button, the display shows a 

time-varying spectrum of the provided signal. Three traces will appear like in Figure 7.4.  

The blue trace is the current time, the yellow one is the Hold trace and the red one the 

MaxHold trace. 

 

 

Figure 7.4 Display Menu 
 

While the data is read, the slide bar advances to the right. The process can be 

paused by pressing stop.  Moving the slide backward moves the reading pointer of the file 

to a previous time. 

A graphical visualization of the spectrum helps to determine the position and the 

number of FDM channels.  The next step will be to design a polyphase filter bank. 

 

7.4.3 Polyphase Design 

The Polyphase Design menu has a submenu called Analyze that provides a tool to 

find the possible number of channels and their relative frequency offset.  By pressing 



 

 33

Channel Finder button, the program will generate a list of possible number of channels 

and their respective frequency offset. 

In the example of Figure 7.5, the program estimated a possible 32 FDM channel 

filter bank with filters separated every 200 kHz.  The rotated the spectrum estimation is 

40 percent of the decimated bandwidth. 

The program calculated additional design parameters. They are shown in the 

Design menu. (See Figure 7.6)  The parameters can be modified manually.  By pressing 

the Design button, the program will generate the filter corresponding to the first channel. 

Adjust menu provides controls to visualize the filter bank and perform 

adjustments.  Pressing the spinning button up or down will change the channels and 

frequency offset. (See Figure 7.7) 

 

 

Figure 7.5 Channel Estimation Tool 



 

 34

 

Figure 7.6 Polyphase Filter Design Window 
 

 
Figure 7.7 Adjust Menu 

 

Once the parameters are fixed, the user is ready to validate the design.  In the 

Design menu, there is a USE THIS button that will input the polyphase filter parameters 

into the program.  The menu is automatically changed to the FDM menu. 

 



 

 35

7.4.4 FDM Signal Demultiplexing Process 

The FDM menu only requires the user to start the polyphase filter subroutine.  

Changing the filter order and selecting a C++ subroutine is optional.  These parameters 

were mainly design for testing purposes. (See Figure 7.8) 

The program will display a window with a waitbar showing the percentage of 

process completed.  A 256 MB file having 2 channels of complex data will take 

approximately 2 minutes to run all the processing in a 2.2 GHz, dual processor computer.  

Actual figures depend on computer hardware and the operating system. 

 

7.4.5 Modulation Menu 

The Modulation menu (See Figure 7.9) provides a Grid control containing the 

names of the files processed.  By changing the type of modulation from “skip file” to 

AM, FM, FM Stereo and FM PLL the user tells the program the files that will be 

processed. 

The next step will be to press Process Now button.  Several waitbars can appear to 

indicate the percentage of processing that the program has completed.  The resulting 

audio is saved using wave-file format (*.wav). 

 

 

Figure 7.8 FDM Menu 



 

 36

 

Figure 7.9 Modulation Menu 
 

A double-click in the date that is shown on Last Run column will play the audio 

file corresponding to the selected channel. 

 

8. Summary 

The SCP project provides non-real time DSP software that allows users to design 

and perform fast FDM computations.  The project required a research of the Polyphase 

Filter methods and a comparison to a baseline method.  After the concept was validated, a 

GUI was created to allow the user to customize the design according to the particular 

specifications.  Additional demodulation techniques were explored and have been 

included in the software to provide the user with supporting tools. 

The polyphase filter method performed faster than the baseline approach 

especially when the number of channels becomes large. Speed improvement was 

expected due to the usage of DSP methods such as decimation, FFT and complex signal 

theory used in the polyphase filter algorithm.  Also it was noticed that frequency rotation, 

complex filters, amplitude and phase extraction has contributed to the code 

simplification. 



 

 37

The polyphase algorithm was coded in Matlab and C++.  The test results indicate 

that Matlab algorithms for FFT and filtering are optimized.  Matlab makes use of the 

FFTW and overlap-saving algorithms which are optimized versions of the FFT and 

filtering algorithm respectively.  This gives Matlab a significant advantage over C++ 

code, although it should not be concluded that one Matlab has been found superior in 

performance. 

Finally, the FM Stereo synchronization techniques were compared: one using 

filters and delays and the other using a PLL approach.  Although it required more coding, 

the synchronization using delays had faster performance than the PLL approach.  The 

PLL main disadvantage is that requires non-linear calculations and makes use of memory 

components (filters) and as a result each calculation has to be sequential as time 

progresses.  The filter approach can take advantage of the FFT overlap saving algorithm 

and thus perform faster. 

 

9. References 

[1] Hayes, Monson H., Theory and Problems of Digital Signal Processing, Schuam 

Outlines Series, Section 5.3, McGraw Hill, New York, 1999, p. 10. 

[2] Shenoix, Kishan, Digital Signal Processing in Telecommunications, Prentice hall, NJ, 

1995, p. 425-427. 

[3] Malvar, Henrique S., Signal Processing with Lapped Transformations, Artech House 

Inc., MA, 1992, p. 97-99. 

[4] Gumas, Charles C., “Efficient Polyphase Filters Demultiplex FDM Signals” Personal 

Engineering, September 1997. 

[5] Mitra, Sanjit K., Digital Signal Processing, A Computer based approach, McGraw 

Hill, NY, 2000 p. 48,698-700. 

[6] www.fftw.org (December 18, 2002) 

[7] Lynn, Paul A., Introductory Digital Signal Processing with Computer Applications, J. 

Wiley & Sons, 1994, p. 270-279. 

[8] Haykin, Simon S., Communication Systems, 4th Ed. New York: Wiley, 2000.  p. 124-

126. 



 

 38

[9] Andrew Noga, Complex Band-Pass Filters For Analytic Signal Generation and their 

Application, In-House Technical Memorandum, AFRL-IF-RS-TM-2001-1, Rome, NY, 

2001. 

[10] Sinclair, Jim, Radio Signal Finding, McGraw Hill, NY, 2001, p. 203-207 

[11] Best, Roland E., Phase Locked Loops Theory, Design and Applications, McGraw-

Hill, New York, 1984, p. 69, 255-259. 

[12] Rosedranz, Werner, Design and Optimization of a Digital FM Receiver Using DPLL 

Techniques, International Conference on Acoustics Speech and Signal Processing, IEEE, 

1985. 

[13] Stephens, Donald R., Phase Locked Loops for Wireless Communications, Digital 

Analog and Optical Implementations, Kluwer Academic, Boston, 2002, p. 209-245, 395-

408. 

[14] Egan, William F., Phase-Lock Basic, John Wiley & Sons, New York, 1998. 

[15] Rorabaugh, C., Britton, Communications Formulas & Algorithms, McGraw Hill, 

NY, p. 93-94. 

 




